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Abstract. In graph theory, a commonly used concept is the partition dimension or partition metric basis is to

uniquely identify the node set of a structure by dividing it into smaller subsets, known as partition resolving sets.

These subsets can then be used to define the partition dimension or partition metric of the graph. This concept

is useful in the analysis and understanding of the structure and properties of graphs. This article describes a

partition dimension of the line graph of the honeycomb network, the Aztec diamond network, and the extended

Aztec diamond network.
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1 Introduction

Mathematical chemistry has recently introduced a wide range of applications to the under-
standing of the chemical structures that underlie the existing chemical idea using mathematical
principles and chemistry techniques, as well as developing and exploring new mathematical mod-
els of chemical phenomena. In chemistry, a chemical graph’s nuclear assistant properties can be
expressed using chemical graph theory. It is expected that chemical graph theory will be impor-
tant in the description and organization of any frame or component structure created. Chemical
compounds or graphs are graphical representations consisting of nodes, which are atoms, and
lines, which are atom-to-atom bonds.

The terms “resolvability” and “placement” in a graph are explained by Harary & Melter
(1976). In another work, Chartrand et al. (1998) obtained a connection between the graph’s
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metric and partition dimension. There are numerous fields where partition dimension is used,
including a network’s validation (Beerliova et al., 2006), navigating by robots (Khuller et al.,
1996), techniques for mastermind games Chvatal (1983), and for describing chemical compounds
in chemistry (Chartrand et al., 2000), or to issues with image processing and pattern identifi-
cation, some of which need the use of hierarchical data structures (Melter & Tomescu, 1984).
Also see Harary & Melter (1976); Chartrand et al. (2000); Rajan et al. (2012) for applications
in networks.

The metric dimension of honeycomb networks is 3, as demonstrated by Manuel et al. (2008).
Graphs of honeycomb networks’ partition dimensions were explored in Rajan et al. (2012).
In Monica & Santhakumar (2019) studied the partition dimension of rooted product graphs.
Nithya & Elavarasi (2022) investigated partition and local metric dimensions for an extended
annihilating-ideal graph. In Hussian & Farooq (2019) obtained the metric dimension for the line
graph of honeycomb networks. Motivated by the above literature survey of honeycomb networks
we are analyzing the honeycomb network’s line graph’s partition dimension.

2 Basis Concepts

We consider connected, simple, and undirected graph A having node set V (A) and lines set
E(A). The length of the shortest path, among two nodes l,m ∈ V (A) is represented by the
symbol d(l,m) and refers to the number of edges that connect them in the shortest distance. The
distance between a node u and a subset Q of V (A) is defined as d(u,Q) = min{d(u, q); q ∈ Q}.
Let π = {P1, P2, P3, . . . , Pk} being organised partition of V (A). Now partition an illustration of
a vertex x ∈ V (A) with respect to π is r(a/(π) = (d(a, P1), d(a, P2), . . . , d(a, Pk)). If for each
set of two unique vertices a, b ∈ V (A), we have r(a/π) 6= r(b/π), π is a partition that resolves
is known as a resolving partition, and its least cardinality is known as a resolving partition of
V (A), and it is symbolized by the symbol pd(A).

In studies about the partition dimension of graphs, established by many authors (Koam et
al., 2022; Hasmawati et al., 2022; Azeem et al., 2022). The limits on the partition dimension
of trees and unicyclic are discussed in Velazquez et al. (2014,?). The wheel graph’s partition
dimension was discovered by Tomescu et al. (2007). The partition dimension for honeycomb,
hexagonal, and rooted product graphs in Rajan et al. (2012); Monica & Santhakumar (2019).

We need the following definitions to prove our main results.

Definition 1. The line graph of a given graph, abbreviated as L(A), is defined as follows. The
edges of G are represented by the vertices of L(A). In A, two edges are terminated at the same
vertex if and only if the corresponding vertices are adjacent in L(A). Figure 1 provides an
example of a network A and its related line network L(A).

Figure 1: A network A and its line network L(A)

Definition 2. The graph’s metric dimension is the minimum number of vertices required to label
the graph in such a way that the label of any two vertices uniquely determines their distance from
each other, and it is denoted by dim(A).

A representation of the relationship between dim(A) and pd(A) for every non-trivial con-
nected graph A can be found in Chartrand et al. (1998), pd(A) ≤ dim(A) + 1.

Finding a graph’s partition dimension is made much easier by the theorems that follow.
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Theorem 1. Chartrand et al. (1998) Let x1, x2 ∈ V (A), and π be a resolving partition of V (A),
if all the nodes y ∈ V (A)\(x1, x2) then x1 and x2 belongs to varies classes of π.

Theorem 2. Chartrand et al. (1998) Assume that A is a connected simple network with no
isolated vertices.

i) If A is a path graph with n ≥ 2 vertices, then pd(A) = 2, and conversely, if pd(A) = 2,
then A is a path graph with n ≥ 2 vertices.

ii) If A is a complete graph, then pd(A) = n, and conversely, if pd(A) = n, then A is a
complete graph Kn.

In computing the partition dimension of connected graphs, the aforementioned results are
helpful. Zhang et al. (2022) calculated the metric dimension of the subdivision of honeycomb
networks and Aztec diamond networks. In this study, we calculate the partition dimension of
the line graph of honeycomb networks, Aztec diamond networks, and extended Aztec diamond
networks.

The partition dimension of a line graph of a honeycomb network will be addressed in Section
3, the partition dimension of an Aztec diamond network and its line graph will be studied in
Section 4, and the partition dimension of an extended Aztec diamond network will be discussed
in Section 5. The concluding remarks and open problems are listed in Section 6.

3 Partition dimension of the line graph of honeycomb networks

First, the structural introduction to HCNn and L(HCNn) is provided in this section. Secondly,
we have shown that the partition dimension of L(HCNn) is 3.

Honeycomb networks are a type of regular network that is often used in the study of complex
systems and their properties. These networks are characterized by their hexagonal topology and
can be constructed in any dimension. A honeycomb network HCNn can be constructed in a
variety of ways using polygons, where n denotes how many hexagons there are the network has
from its center to its edge. The given HCN1 needs to have a layer of six hexagons added to
its outer edge to create HCN2. Therefore, in order to create HCNn, we coat HCNn−1 with
6(n − 1) hexagons. To obtain the line graph L(HCNn) of the honeycomb network HCNn,
we represent each edge in HCNn as a vertex in L(HCNn)), and two vertices in L(HCNn)
are adjacent if their corresponding edges in HCNn share an endpoint. The upper bound of
radio number and radio mean number for honeycomb and honeycomb torus networks are found
in Augustine & Roy (2023). Roshini et al. (2021) studied Non-neighbor topological indices
for Honeycomb networks. Honeycomb networks and their line graphs have several interesting
properties, including high symmetry, regularity, and low degree of divergence, which make them
useful in a variety of applications, including materials science, physics, and computer science.
Figure 2 shows a diagram of a honeycomb network and a line graph of the same dimensions.

Figure 2: Honeycomb networks and its line graph of dimension 2
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Theorem 3. Let A be a honeycomb network, then pd(L(A)) = 3 for n ≥ 2.

Proof. The line graph of honeycomb networks has 7 levels, say, aji , b
j
i , c

j
i , d

j
i , li, ri and mi. Label

the vertices of {aji , c
j
i : 1 ≤ i ≤ 4n− 2j − 2, 1 ≤ j ≤ n− 1}, {bji , d

j
i : 1 ≤ i ≤ 2n− 2j + 1, 1 ≤ j ≤

n − 1} and {li, ri : 1 ≤ i ≤ 4n − 2} and {mi : 1 ≤ i ≤ 2n}. The identification of L(HCNn) is
shown in Figure 3.

Figure 3: Labeling of the line graph of honeycomb networks of dimension n

By Theorem 4, we have pd(L((HCNn))) ≥ 3. We will prove the equality with the following
partition-resolving sets. Let π = {P1, P2, P3} where P1 = {m1}, P2 = {an−1

1 , an−1
2 , . . . , an−1

4n−2j−2}
and P3 = V (A)− {P1 ∪ P2} be the resolving partition set of L(A). A vertex’s representation in
L(A) concerning π is as follows.

For 2 ≤ i ≤ 2n each vertex’s visual representation mi of L(A) in relation to π as r(mi\π) =
(2i− 1, 2n− 1, 0).

For 1 ≤ i ≤ 4n−2 each vertex’s visual representation li of L(A) in relation to π as r(li\π) =
(i, 2n− 2, 0).

For 1 ≤ i ≤ 4n−2 each vertex’s visual representation ri of L(A) in relation to π as r(ri\π) =
(i, 2n− 2n, 0).

For 1 ≤ i ≤ 4n − 2j − 2, 1 ≤ j ≤ n − 2 the representation each vertex aji , of L(A) with

respect to π as r(aji\π) = (2j + i, 2n− 2j − 2, 0).

For 1 ≤ i ≤ 4n−2j−2, 1 ≤ j ≤ n−1 the representation each vertex cji of L(A) with respect

to π as r(cji\π) = (2j + i, 2n+ 2j, 0).

For 1 ≤ i ≤ 2n− 2j− 2, 1 ≤ j ≤ n− 1 the representation each vertex bji and dji of L(A) with
respect to π as follows.

r(bji\π) = (2(j + i)− 2, 2n− 2j − 1, 0) and r(dji\π) = (2(j + i)− 2, 2n+ 2j − 1, 0).

Each vertex’s position concerning the above representation of the π we get r(u\π) 6= r(v\π)
for any u, v ∈ L(A). Hence the pd(L(A)) = 3.
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4 Partition dimension of the Aztec diamond networks

In this section, we’ve demonstrated that, for n ≥ 2, the Aztec diamond networks and its line
graph partition dimension is 3.

The Aztec diamond graph of order n, denoted by AZNn, is formed by connecting the straight
edges of staircase shapes of height n. Thus, it can be described as a lattice. composed of unit
squares centred at (l,m) such that |l| + |m| ≤ n. The number of unit squares that make up
AZNn with order n is 2n(n + 1). In Fendler & Grieser (2015); Kokhas (2009), an AZNn with
various proportions is illustrated and further investigated. For illustration in following Figure 4
depicts AZN2 and AZN3, respectively.

Figure 4: Aztec diamond networks of dimension 2 and 3

Theorem 4. Let A be a Aztec diamond networks of dimension n, then pd(A) = 3, n ≥ 2.

Proof. Since the vertex set of AZNn has 5 levels, say li, ri, p
j
i , q

j
i , and mi. Label the vertices

{pji , q
j
i , : 1 ≤ i ≤ 2n− 2j + 1, 1 ≤ j ≤ n− 1}, {li, ri : 1 ≤ i ≤ 2n+ 1} and {mi : 1 ≤ i ≤ 2n+ 1}.

The identification of AZNn is shown in Figure 5.

Figure 5: Labeling of Aztec diamond networks of dimension n

By Theorem 4, we have pd(AZNn) ≥ 3. We will prove the equality with the follow-
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ing partition-resolving sets. Let π = {P1, P2, P3}, where P1 = {l1, p11, p21, . . . , p
n−1
1 }, P2 =

{r1, q11, q21, . . . q
n−1
1 } and P3 = V (A) − {P1 ∪ P2} be the resolving partition set of AZNn. A

vertex’s representation in AZNn about π is as follows.

For 2 ≤ i ≤ 2n − 2j + 1, 1 ≤ j ≤ n − 1 the visual representation of each vertex pji , q
j
i of

AZNn with regard to π as. r(pji\π) = (i− 1, 2j + i+ 1, 0) and r(qji \π) = (2j + i+ 1, i− 1, 0).

For 2 ≤ i ≤ 2n+ 1 each vertex’s visual representation ri, li of AZNn about π as follows.

r(ri\π) = (i+ 1, i− 1, 0) and r(li\π) = (i− 1, i+ 1, 0).

For 1 ≤ i ≤ 2n + 1 each vertex’s visual representation mi of AZNn with respect to π as
r(mi\π) = (i, i, 0).

According to π the illustration of each vertex in the above graph, we get r(x\π) 6= r(y\π)
for any x, y ∈ v(AZNn). Hence pd(AZNn) = 3.

Theorem 5. Let A be a Aztec diamond networks of dimension n, then pd(L(A)) = 3, n ≥ 2.

Proof. Since the vertex set and label of the vertices of L(AZNn) defined by V (L(AZNn) =
{vj0; 1 ≤ j ≤ 2n} ∪ {vji ; i = 1, 2, 3 . . . , 2n, 1 ≤ j ≤ 2n+ 2} ∪ {vj2n+1; 1 ≤ j ≤ 2n} from bottom to
top respectively. The identification of L(AZNn) is shown in Figure 6.

Figure 6: Labeling of the line graph of Aztec diamond networks of dimension n

By Theorem 4, we have pd(L(AZNn)) ≥ 3. We will prove the equality with the following
partition-resolving sets. Let π = {P1, P2, P3}, where P1 = {v11}, P2 = {vj0; 1 ≤ j ≤ 2n}
and P3 = V (L(AZNn)) − {P1 ∪ P2} be the resolving partition set of L(AZNn). A vertex’s
representation in L(AZNn) about π is as follows.

For i = 0, 1 ≤ j ≤ 2n the visual representation of each vertex vji , of L(AZNn) with regard

to π as r(vji \π) = (j, 0, 1).
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For i = 1, 1 ≤ j ≤ 2n + 2 the visual representation of each vertex vji , of L(AZNn) with

regard to π as r(vji \π) = (j − 1, i, 0)

For 2 ≤ i ≤ 2n, 1 ≤ j ≤ 2n+ 2 the visual representation of each vertex vji , of L(AZNn) with

regard to π as r(vji \π) = (i+ j − 2, i, 0)

For i = 2n + 1, 1 ≤ j ≤ 2n the visual representation of each vertex vji , of L(AZNn) with

regard to π as r(vji \π) = (i+ j − 2, i, 0).

According to π the illustration of each vertex in the above graph, we get r(x\π) 6= r(y\π)
for any x, y ∈ V (L(AZNn)). Hence pdL(AZNn) = 3.

5 Partition dimension of the extended Aztec diamond networks

The extended Aztec diamond network has the same shape and structure as the original Aztec
diamond, with the exception that additional edges join the outside vertices and an n dimensional
extended Aztec diamond network denoted by EAZDn. For illustration labeling of an extended
Aztec diamond network of dimension n is shown in Figure 7.

Figure 7: Labeling of extend diamond Aztec networks of dimension n

Theorem 6. Let A be an extended Aztec diamond network of dimension n, n ≥ 3 then
pd(EAZDn) = 3.

Proof. Since the set of vertices EAZDn has 5 levels, say li, ri, p
j
i , q

j
i , and mi. Label the vertices

{pji , q
j
i : 1 ≤ i ≤ 2n− 2j + 1, 1 ≤ j ≤ n− 1}, {li, ri : 1 ≤ i ≤ 2n+ 1} and {mi : 1 ≤ i ≤ 2n+ 1}.

By Theorem 4, we have pd(EAZDn) ≥ 3. We will prove the equality with the following
partition-resolving sets. Let π = {P1, P2, P3} where P1 = {pn−1

1 }, P2 = {l1,m1, n1} and P3 =
V (A)−{P1∪P2} be the resolving partition set of EAZDn. A vertex’s representation in EAZDn

about π is as follows.

For 2 ≤ i ≤ 2n+ 1 each vertex’s visual representation li of EAZDn about π is as follows.

r(li|π) =


(n+ 1, i− 1, 0) if 2 ≤ i ≤ n

(n, i− 1, 0) if i = n+ 1
(n− 1, i− 1, 0) if n+ 2 ≤ i ≤ 2n+ 1.

For 2 ≤ i ≤ 2n+ 1 the illustration of every vertex mi of EAZDn about π is as follows.
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r(mi|π) =


(n+ 2, i− 1, 0) if 2 ≤ i ≤ n
(n+ 1, i− 1, 0) if i = n+ 1

(n, i− 1, 0) if n+ 2 ≤ i ≤ 2n+ 1.

For 2 ≤ i ≤ 2n+ 1 the illustration of every vertex ri of EAZDn with regard to π as follows.

r(ri|π) =


(n+ 3, i− 1, 0) if 2 ≤ i ≤ n
(n+ 2, i− 1, 0) if i = n+ 1
(n+ 1, i− 1, 0) if n+ 2 ≤ i ≤ 2n+ 1.

For 1 ≤ i ≤ 2n− 2j + 1, 1 ≤ j ≤ n− 1 the representation each vertex pji , and qji of EAZDn

with respect to π as follows.

r(pji |π) =


(n− j + 1, i+ j − 1, 0) if 1 ≤ i ≤ n− 1

(n− j, i+ j − 1, 0) if i = n
(n− j − 1, i+ j − 1, 0) if n+ 1 ≤ i ≤ 2n− 2j + 1,

and

r(qji |π) =


(n+ j + 3, i+ j − 1, 0) if 1 ≤ i ≤ n− 1
(n+ j + 2, i+ j − 1, 0) if i = n
(n+ j + 1, i+ j − 1, 0) if n+ 1 ≤ i ≤ 2n− 2j + 1.

Each vertex’s relationship to π can be seen from the above depiction we get r(x\π) 6= r(y\π)
for any x, y ∈ V (EAZDn). Hence pd(EAZDn) = 3.

6 Final observation

In this article, we have calculated the partition dimension of the line graph of honeycomb net-
work L(HCNn), Aztec diamond network AZNn, the line graph of Aztec diamond network AZNn

and extended Aztec diamond network EAZDn of dimension n ≥ 2. The resolving partition set
can be used as a structure-activity dataset to quickly locate and verify the structure-activity
reasons. Moreover, the partition dimension plays a crucial role in understanding the structural
and algorithmic properties of line graphs derived from honeycomb networks and Aztec diamond
networks. It has applications in communication networks, fault tolerance, tiling problems, al-
gorithmic complexity, and network design, providing valuable insights for various fields ranging
from computer science to telecommunications. The obtained resolving partition sets enable easy
viewing and browsing of patterns among the used chemical structures through a convenient and
intuitive interface. Further partition dimensions of other interconnection networks such as sub-
division of Aztec diamond networks and sub division of extended Aztec diamond networks are
investigated.
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